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SUMMARY

A linearized theoretical analysis has been maede to determine
minimm-wave-drag airfoil sections for arrow wings having the same air-
foil sections at all spanwise stations. The drag of the wings was mini-
mized subject to the condition of either a glven thickness ratio at a
gspecified chordwise location or a glven volume. Numerical computations
of the alrfoil shape and wing wave drag were performed for a delta wing
and for an arrow wing having a ratio of the tangent of the tralling-edge
sweep angle to the tangent of the leading-edge sweep angle of 0.k. The
range of the ratio of the tangent of the leading-edge sweep angle to the
tengent of the Mach line sweep engle extended from O (two-dimensional)
to 2.5. : -

INTRODUCTION

At supersonic speeds, the theoretical determination of minimum-
wave-drag wings is of importance in estsblishing criteria for efficient
aeronautical design. There is a rapidly increasing amount of information
based on linear theory (refs. 1 to 4) and slender-body theory (refs. 5
and. 6) to serve as a guide for the selection of three-dimensional
minimm-wave-drag wings of given thickness or volume. As yet, however,
1little informstion exists for specifying the shapes for minimum-drag
girfoil sections for wing plan forms of current interest at supersonic
Mach numbers. It is the purpose of the present paper to study this
problem by linearized theory.

A constant-thickness-ratlio wing of arrow plan form with an arblitrary
alrfoil section is considered. For convenience, the root chord of the
wing is assumed to be unity. The airfoll section (assumed to be the
game at all spanwise stations) is composed of a series of straight-line
segments. The drag of such a wing is then minimized subject to the
restriction of either a given thickness ratio at a specified chordwise
location or a given volume, and the equations for the corresponding
minimm-drag asirfoll shapes are determined. Computations are made to
esteblish the minimum number of sides required for a reasonable deter-
mination of the alrfoil shape and drag. Optimum sections and the
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corresponding wing drag coefficients are then calculated for a series of
delta and srrow wings swept various amounts shead of and behind the Mach
lines. As a limiting case, the results of the optimum-airfoll calcula-
tions for a delta wing of fixed volume are compared with those of the
corresponding airfoil derived snalytically from slender-body theory.

The asuthors wish to acknowledge the cooperative efforts of the
Netional Buresu of Standards personnel, particularly Otto Steiner,
Selly Teingou, snd Norman Levine, who set up the coding and carrled
through the numerical computations on the Nationel Bureau of Standards
Eastern Automatic Computer during June 1953,

SYMBOLS
M Mech number
B cotangent of Mach angle, VM2 - 1 - ) B}
t thickness ratio
N number of equally spaced straight-line segments used to form
one side of symmetrical airfoil (number of chord divisions)
k tangent of sweep angle of any erbitrary ridge line
k1 tangent of sweep angle of leadlng edge
Kyl tangent of sweep angle of trailing edge
n= k/B
X,¥ 52 Cartesisn coordinstes (see fig. 1)
A cross-sectional area of body at station x
Anex maximum cross-sectionel area of body
A slope of airfoil surface divided by thickness ratio
z(x) airfoll shape function
K ratioc of airfoll cross-sectional area to area of circum-

scribing rectangle

P integer specifying last subsonic rldge line
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m integer specifylng location of maximum thickness
i,j,r,a,p arbltrary indices
A}\r = Kr - kr_ l

B',B,D,f functions used to determine drag

F function of AN defined by equation (8)
Cp drag coefficlent based on wing area
ANATYSIS

Iinear Theory

In reference 1, the basic equations for the drag of arrow wings of
double-wedge airfoil sections heve been obtained by the superposition
of constant-strength source distributions within the wing plan form.
This method has been extended in reference 7 into a generalized proce-
dure whereby the wave dreg of arrow wings having erbitrary profiles may
be determined. This extension is accomplished by using a finite number
of constant-strength source distributions and hence entails approxi-~
mating the airfoil section by a multisided polygon. If the sides of
the polygon are equally spaced (fig. 1) and the alrfoil section is
symmetrical, the drag at zero angle of attack is, in slightly different
notation from that of reference T,

Nx BC
FD = - (J-i)zn—lB'n,EimiAx -

8<1 ) nN+l>t2 i=1 1
ny
N+1 n n
= @+
i St ni>2(3 1)%p A VOO
—_—f — - 113 — -
s £ ni<nj (i’nd> *o
N N+1 n n
(3- 1% = f(ni:-n—J>A7\1 DNy (1)
i=p+l J=I+1 1 1
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where the new varlable AN, 1s given by

BAp = Ar = Apa1
and where A 1s defined by the relationship

dz
In equation (1), the index p defines the last subsonic ridge line (a

subsonic line is one whose normal Mach number component is subsonic;
see flg. 1) and has the integer value determined from

N{n, - 1 N(n; - 1)
N(my - 1) +1>p2 (1_ (2)
i T 1 By - Ay
The values of 1n are geometrically related by the equation v
1-1 T
ny =ny - - (n]_ - nN.,.l) (3)

The formules for the functions B', B, D, and f obtained from refer-
ence 7 are

B‘<ni Ei) -— 1o%e m1 Dy costmy

,—2) =

n.

i . (n_j>2 ny2 -1 ™M ‘gie_ 1
ny

2Vn'32 -1

logefl + (ke)
njz-l ni-nj+¢n12-l-dn32-l
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B(éi:zi) B - ek - ESEELEEE +
2 2 ny 2
1 - <Il ) i 1 1 l’l:‘_2 -1
nj
) / 5
l-n
2 tan~1 J (4v)
VE - nj i -nj+ an2 -1
Din e = 198 13 +
i:nj > >
e
2J
ni® - —& + ni2 - e 2 Cn 2. l)
N Y t (n:;)
—————— loge < - 8 (4e)
anz - 1 L nl<% -t
J
=
f<ni,z._':?-.) = 1 e cos™lny + ( + sin'lnj) (4d)

L. (;%)EW m

In order to investigate optimum asirfoll sections for arrow wings,
the drag, as given by equstion (1), is minimized subject to the speci-
fied thickness or volume condition and the airfoil shape parameters AAi
are determined.
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The specified conditions are:

(1) The airstream shead of and behind the wing is parallel to the
wing~-chord plene .

+ )
¢1=%N\1=0 (5)
i=1
(2) The eirfoil must close at the leading and trailing edges
N+1
fo=2_ 1MM =0 (6)
i=1

(3) The airfoil must have a glven thickness ratio t &t a specified
frection of the chord m/N

¢5a=2i(m+_l-i)N\i—N=0 (72)
i=1 .

or the sirfoil must have a given cross-sectional area so that the wing
hag a given volume

¢3b=-;—2§12N\1-K=0 (7o)

In equation (7b), K specifies the ratio of_the cross-sectional area
of the optimum airfoil to the area of the circumecribing rectangle (a
point discussed subsequently).

The shape of .the minimum-dreg airfoll can be obtained analytically
by the extreme-value theory of reference 8. Since the thickness dis-
tribution z(x)/t of an optimum airfoil section is independent of the
thickness ratio (a fact that can be inferred from eq. (1)), the minimum-
drag shepes are determined by first formulating the function

*

s + Xy + YPo + 2 52 (8)

BCp
F = = =
8(x - )" P50

*The braces indicate that the appropriete conditlon, either ¢3a or
¢5b’ is used.
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ﬂNz ﬁCD
where is the function of AA specified by equation (1)

M1\t
81 - o

and @1, @p, Pzq) and @z, are the functions of AN specified by

equations (5), (6), (7a), and (Tb), respectively. The varisbles X, Y,
and Z are undetermined multiplliers. The optimum AA +values are then
obtained by solving the system of N + 4 linear simultaneous algebraic
equations given by:

SZR; =0 (9)

g, =0 (10)

gy =0 (11)
and either

¢3a =0 (12a)
or

@zp = O (12b)

Equations (9) to (12) are shown in matrix notation in exploded
form in figure 2; the relations for the individual entries in the matrix
are also included. The Interchange of the area condition for the thick-
ness condition simply changes one row and one columm of the matrix as
indicated in figure 2.

In the numerical evaluation of the optimum airfoil for a specified
area, the parameter K depends upon the alrfoil shape. The calculated
values of AN, however, are directly proportional to any assumed value
of X. Hence, any arbitrary value may be initially selected and the

solution linearly scaled so that the relationship for the airfoil
coordinates

t ANl

N (13)

Zr = 22p.]1 = Zp.p +

yields & value of zr/t equal to 0.5 at the location of maximum thickness.
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Slender-Body Theory

In reference 6, it is established, on the basis of slender-body
theory, that the optimum'wing and body of revolution (both for a given
length snd volume) have the same sxlal cross-sectional area distribution.
Hence, as a limiting case for n arbitrarily large, the airfoil section
obtained by this slender-body method can be compared with the results
of the previcus linear analysis.

The shepe of the airfoil section of a constant-thickness-ratio delta
wing having the same axial cross-sectional area distributlon as a body
of revolution is

Z(X) 1 (l X)dg}({}{) + 2A(x) (l)-l-)
Tt 2 -
(- e[+ 2

where Xpgx 18 the location of maximum thickness of the airfoil and
A(x) is the axlal cross-sectionsl area distribution of the body or wing.
Equation (14), when applied to the minimum-drag body of revolution for a
given length and volume (ref. 9)

M) _ g(x - x2)3/2 (15)

results in the alrfoll shape

a1 (-2 - 3)(x - 1) 6)
’ ) <§max - xmax2>l/2<?xmax - 5)(%max - l)
5-5

where Xpoy = ——j:~=a.-

The shape determined by equation (16} 1s compared with the linear-
theory shapes in the following section.
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NUMERICAL RESUITS

Effect of number of sides N.- The initiel problem consisted in
establishing the number of sides per surface N required for a reason-
eble gpproximation to the shape end drag of the limiting sirfoil having
an infinite number of sides. For this trial calculation a delta wing
was assumed and the thickness condition applied. A location of meximum
thickness m/N of 0.20 of the chord was selected and & value of ny = 1.7
(subsonic leading edge) was assumed. A subsonic-leading-edge condition
was selected since it was anticipated that the limiting airfoil would
have a round nose and hence require the largest number of flat sides
per surface N for a good approximstion.

The results of the computations for N =5, 10, 20, and 40 sides
are shown in figure 3 and presented in teble I. Perhaps more striking
in figure 3 than the Influence of the number of sides is the bump
located at the position of maximum thickness. From an examinstion of
ell the numerical computations, it can be inferred that this bump,
which tends to become more cusplike as the number of sides increases,
occurs only when the thickness auxiliary condition is applied with a
subsonic maximum-thickness line. For such conditions, the resulting
airfoil is in violation of the assumptions of linearized theory and
hence represents a restriction on the use of such a theory. Further-
more, in the use of such airfoils, flow separation would undoubtedly
be a governing factor. As is demonstrated subsequently, if the maxlimum-
thickness line is supersonic or if the area conditlon is used, no such
difficulty arises. From figure 3, it can be seen that an increase in
the number of sides from 20.to LO has little effect on either the drag
or the airfoll shape; a value of N = 20 was therefore selected for
all succeeding computations. Since in this test case the limiting
airfoil sppears to be a difficult one to approximate by line segments,
it 1s believed that the value of N = 20 1is entirely adequate.

Range of computations.- The computations of the wave drag and alr-
foil shape for the optimum sirfoll sections were performed for delta
wings and for arrow wings, that is, wings having a ratio of the tangent
of the trailing-edge sweep angle to the tangent of the leading-edge
sweep angle of O and O.Lk, respectively. The range of velues of ny
extended from 0.5 to 2.5. For the thickness condition, maximum-
thickness locatlons of 0.20 and 0.50 of the chord were investigated. A
complete summary of the range of computations is presented in table II.
The final computations are tabulated in tebles IIT and IV for the delta
and arrow plan forms, respectively, and are plotted in figures 4 and 5.
Figures 4 and 5 also include the two-dimensional (nj = 0) optimum results.

Optimuim section for the thickness condition.- Figure Lt presents a
comparison of the optimum-airfoll-shape and drag calculations with
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corresponding double-wedge results (ref. 10) for two chordwise locations
of meximum thickness: 0.20 and 0.50. For_the 0.20 location of maximum
thickness (fig. 4(a)) all results for nj; > 1 correspond to subsonic
meximim-thickness lines; whereas for the 0.50 location (fig. 4(b)) all
results correspond to supersonic maximum-thiclkness lines.

For both locatlons of meximum thickness (figs. 4(a) and 4(b)), plan
form has little effect on the optimum shapes. For nj <1 the optimum

airfoil has almost the same shepe and drag as the double~wedge airfolil
(figs. 4(a) and 4(b)). For the 0.50 location of maximum thickness

(fig. 4(b)), both wings have, for subsonic leading edges (n; > 1), opti-
mum sections which are more full at the front, more closely resemble
subsonic airfoils, and have sbout 16 percent less drag than the corre-
sponding double-wedge section. For the 0.20 location of maximum thick-
ness (fig. 4(a)), the progressive decreasse in magnitude of the bump at
meximum thickness is apparent as n; decreases. No discussion of the
drag of wings having subsonic meximim-thickness lines is considered to
be warrasnted in view of the limitetions on the theory and the separation
problem in a real flow for this case.

Optimum section for the area condition.- Figure 5 presents the drag
and optimum airfoil shapes for delta and arrow wings of a glven volume.
Agein the ailrfoil shapes are plotted at the appropriste ny velues. As
was the result for the thickness condition, plan form had little effect
on the optimum section, and for the supersonic leading edges, the two-
dimensionsl optimum (the biconvex section) results for all practical
purposes. This latter result was estgblished for an elliptic-plen-form
wing in reference 3. For subsonlc leading edges (n; > 1), the airfoils
become more full et the front and ageln resemble subsonic airfoils. The
meximum-thickness location hes moved forward for large values of nj
and for the last case computed occurs at 25 percent of the chord. The
progressive rounding of the nose section of the delta wing for highly
subsonlic leading edges is shown in figure 6 where the slender-body sir-
foil (nj—s>®) given by equation (16) (table V) is compared with airfoils
derived from linesr theory. For this slender-body airfoll, the locstion
of maximm thickness is at 19 percent of the chord. For a value of nj
of 2.5 the linearized result already indlicates a close slmilarity with
the limiting result (n]—>w) as obtained by slender-body theory.

The optimum linear-theory sirfoil, subject to the thlckness condi-
tion, is not compared with the slender-body airfoil (derived from an
optimum body of given length and diemeter) because the suxiliary condi-
tions are not comparsble.

Comperison of airfoil sections for wings of given volume.- In order
to establish a basis of comparison for the drag results in figure 5, the
drag of wings of the same plan form and volume but having blconvex and
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NACA 65A-series sections was calculated (egain for N = 20) and is com-
pared in figure 7 with the dreg of optimum sectlons. This comparison is,
perhaps, somewhat artificial in that preselected values of the location
of maximum thickness exist for the biconvex (50 percent) and the NACA
65A-series (4O percent) wings. These results are believed to be of
interest, however, inasmuch as the biconvex section 1s the two-dimensional
(n; = 0) optimum for a given area and the 65A-series section is of current

interest.

For the supersonlc leading edges, the drag reduction of the optimum
section as compared with that for the biconvex section is small and
amounts to less than 10 percent. For the subsonic leading edges, the
drag reduction of the optimum section is 25 percent of that of the )
biconvex wing of delta plan form and 33 percent of that of arrow plan
form for a value of n; of 1.7 (60° leading-edge sweep at M = 1.k, for
example). Corresponding values of the drag reduction of the optimum
section as compared with those for the NACA 65A-series sections would be
gbout 10 percent and 15 percent, respectively, at the same value of nq.

CONCLUSIONS

A linearized theoretical analysis has been made to determine the
minimum~-wave-drag airfoil sections for arrow wings having the same
airfoil sections at all spanwise stations. The drag of the wings was
minimized subject to the condition of either a given thickness ratio
at a specified chordwise location or a given volume. Numerical computa-
tions were performed for a delta wing and an arrow wing having a ratio
of the tangent of trailing-edge sweep angle to the tangent of the leading—
edge sweep angle of 0.4t. The results of the computations indicate that:

1. For either the thickness or the volume condition:

(a) The change in plen form resulted in only & slight change
in the optimm section for either subsonic or supersonic leading

edges.

(b) The optimum airfoil sectlion for supersonic lesdlng edges
is very nearly the two-dimensional optimum and the drag reduction
from the two-dimensional optimum is less than 10 percent.

2. For the thickness condition:

(a) Drag reductions of about 16 percent from double-wedge
sections resulted for two exemples having subsonic leading edges
and supersonlc maximum-thickness lines located at 50 percent of
the chord.
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(b) The optimum alrfoll sectlions obtained for subsonic leading
edges with subsonic maximum-thlckness lines violate the assumptions
of linear theory. Flow separation over these airfolls would be a
governing factor in the drag determination.

3. For the volume condition:

(a) Drag reductions of 25 percent and 33 percernt from biconvex
sections resulted for a delta wing and an esrrow wing, respectively,
for a 60° swept leading edge at a Mach number of 1.4. When com-
pared with NACA 65A-series sections for the same conditions, the
drag reduction is dbout 10 percent and 15 percent, respectively.

(b) The optimum airfoll section for a very slender delta wing
obtalned by this analysis spproaches the slender-body optimum
section.

Langley Aeronsutlcal Laboratory,

National Advisory Committee for Aeronautics,
Langley Field, Va., February 17, 195h.
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TABLE I.- DELTA-WING ATRFOIL ORDINATES z/t AND DRAG PARAMETERS

E= 1.73 %= 0.2]

Y

Ordinate, z/t
X
N=5 ¥ =10 N =20 N =540

0 0 0 0 0

INs7-,> TS SuNSUORU [ O S —"— .11060
.050 B T .17084 .15093
Moy .Y EpvoreRrvRu S vupu N T ——— .18862
00 | memeew alk812 24078 .22154
A25 0 | smmmee e ] cmceee .25309
o e .29181 .28982
1 v > T S v T S .31681
.200 5000 50000 50000 50000
225 | mmmmee ] emeeee | ememee- 31175
- B «29533 . 28663
- . S e L [ T .26085
300 | emme—— 28241 26651 «2439h
385 ] mmemeem | emeeeee ] meceee- 23050
B 1 B 23900 .21936
¢575 -------------------- 020966
400 2818 2 2h6 21935 . 20089
2 S L e .19248
197270 J oy e — 20106 L1841k
o}'"75 -------------------- 117581"
500 ] eemeee 20226 18297 .16759
525 | memeem ] mmmemme | memeeee 15934
S50 | memmem e .16497 15110
R R T L B 14286
600 .1852 16243 14695 L1360
N R B e B 12633
H50 7 | cmmmme | mmeeane 12887 .11804
N R B e e 10974
B (o7 N - 12236 11071 .10140
725 | mmemme | mememee | e .09305
I 4570 S 09247 .08468
I & (- (oo (oo e ——— .07628
.800 .0930 08193 o7h13 06787
N = S B N e e 05943
850 ) emmemm ] memeeae 05571 05098
N I e e .0k251
=T o R T — o113 03721 .03k02
925 | emmemm b mmmmeee | meeeee- .02551
.950 e S S — 01864 .01699
-975 -------------------- -008]+5

1.000 0 ) 0 .00010
BCp

- 2.337 2.0677 1.8412 1.6745
t
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TABLE II.- RANGE OF COMPUTATIONS FCR OPTIMUM AIRFOIL CAICULATIONS

[m = 29]
Thickness conditlon
1 fier n B_oo | Boos Area condition
ﬁ' = . ﬁ = .

0.5 p.4 X x
1.0 b4 b d X
0 1.3 X p4
1.7 X X X
2.5 b'd
5 X b 4 X
X 1.3 p.d X
' 1.7 b'd b d
2.5 X X




TABLE TII.- DEUTA-WING ATRFOIL ORDIRATES =/t ARND DHAG PARAMETERS

EEH/kl=O; N-EE[

{a) Thickress condition (b) Aren copdition
Ordinate, z/t Ordinate, zft
n = 1.0 ny = 1.3 py = 1.7 x ny = 0.5 m = 1.0 o3 = 1.3 ny = 1.7 ny = 2.5
= 0.5/7 = 0.2/F = 0.5|% = 0.2 § =025 =05 K = 0.66312{X = 0.64093)K = 0.72793{X = 0.72200( K = 0.65085
a 0 0 0 0 0 0 0 0 0 0
LO730| .09318{ .0%178| .26726 | .170B4| 18775 {05 05589 JOEUTT 26700 ST 35186
o927 .2amou| o739 36301 | Jokor8] 25347 || .10f L1755 ,12298 3377 Jiihey L2793
L18385] J3m377| o11981) 3763 | 20181 .31108 15 2496 .19158 38351 L6648 7809
-19305| .50000| .16856| .50000 | .50000| .35683 || .20  .30952 23707 L2485 49050 K971
Lou285| JABooo| .200uB| A6TBT | .29533| J39527 )| .25]  .3650T7 31722 o063 50000 50000
29317 MLT2| ZTRRT| JMASST | 26651 JA27ET 30| LAL3T 3701 L6392 49903 .L9oz0
35 Shhop| Jho7l J32676) J421kS | .25900] J45385 35 §a820 41577 L8221 k9191 L7215
ko 39551 Lake3f L3 39516 | .21935| 47170 40 H7536 L5206 Lokh8 48104 B85
45 Jderhol J30605) JLL053| L26TCO | .20106| L4857h | .AS| o268 L7861 50000 L7126 Je21sh
.50 50000 .36;2 .50000| .33756 | .18297| 50000 50| 50000 Loy 19818 .uﬁg&; .39218
.55 A5053) .33 AskEs) L3068 .1@9\7 .{pé}zla -5 .59'“715 -50000 .h&_ggi L4ho18 36229
".60 SHO091| .30007| WAOTTB] 27512 | L1h605| Jh2o3k || L6801 A8kl 49583 L7063 41758 33311
G5 Jas11p| .26531] . .e4259 | .12887| 37368 || .65] .46065 LSBT RSP 5&&69 30380
.T0 30131 22953 31047 .20935 | 11071 32440 L0 42673 Ji580 L0872 3558 .
E .25153| .19286] ,26057] -175%52 | .092u7| .27318 gg 38227 L0335 36419 .51243 .25
. 20125 L1554 | .200u9] LIA119 | LOTMLE| 22047 . 32720 832 31035 .26h1G .19
.85 .15107| .11 215793 .106841 | .055T71| 16660 B 26107 .2B0ss LOhTOT .20891 .15
.90 LOor872| W10578] W07126 | W0B721) L1179 | | .90]  .1B50% . 19954 17426 TN 10853
95 L050hk) .039%B8) .05311] .0%STT | -0186: 056211 .95] .09789 Jdosh2 9190 07685 05659
1.00 0 0 0 0 0 1.00| © 0 0 0 0
%CEQ 42011 NOLG28 (4.8363 (k.7317  |1.B412 |3.5006 i’g-]l 5.6416 6.3176 5.133%9 3.7968 2.1993
i1
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TABIE IV.- ARROW-WING ATRFOIL ORDINATES z/t AND DRAG PARAMETERS

EN+1/kl = Ol N = EEI

(a) Thickness condition (b) Area condition
Ordinate, =z/t Ordinate, =zft
x ny = 0.5 o = 1.3 ny = 1.7 n = 2.5 R, = 0.5 ny = 1.3 ny = 1.7 n] = 2.5
X
§=02[g=05|F=05 %-o.-‘ §= 02 K = 0.66423 | K = 0.75780 | K = 0.63403 | K = 0.60363
0 ) 0 0 0 0 0 0 0 0 0
05| .12328| 048135 | .1B765 12491 10972 .05 09106 +33391 .34183 .33808
A0 L2hTr2| 09669 | .25L06 18539 16735 .10 .1T346 J11oh 41930 L1561
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TABLE V.- DELTA-WING ATRFOIL ORDINATES BASED ON

SLENDER~BODY THEORY

x z/t—
0
.05 . 36060
.10 L5403
.15 49215
a.19 .50000
.20 49967
.25 48760
.30 16236
.35 L2825
ko .38837
L5 34509
.50 .30028
55 25546
.60 21184
.65 .170Uk4
.70 .13210
N 09752
.80 06726
.85 04182
.90 .02162
.95 .00720
1.00

80,190983.
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Figure l.- Schematic drawing of wing geometry.



]
[ |
AReA coNOTioN [= = [# - - [- [ [- [ |- |12 fsTe To [ []
VARIABLES ANAMAN - - - - - - - AAANAAX Y Z .
H HOoN - of
FLLOW CONDITION |2 |2 ]2 | ';-
CLOSURE CONDITION |2 ]z]2}-|-1-|-|-|"1|" ° ]
THICKNESS CONDITION NN = [=[=]- T~ o [un o
AR RN h - |
1 3 - - . -l .
I ] 1 : —
2 I | _.-...
a o a A"B '_ _-.-
x - .
Ad : L?_
— Calt
| © | ]
i ° Ch
L) 1 L
” Az A, ASNNES _{
L2 S ; ]
[} —
.t\ \\\ 1 ']
1 \XT \\'\\ - T
M o T
q ”I °

DRAG SUBMATRIX

A:B--(a-m ——a’(.,_'ir)a- (a—ﬂ)k (k.)z ( %) A.lﬂ -—(.--—Bl';'_—ﬂ(n.-%) A-B ~—(e=g) 7- k- f(_, %:)

Figure 2.~ Exploded view of coefficient matrix of equations (9) to (12).

02

aTe NI VDN

A




NACA TN 3183 21

40 /Jr¥— ——
\l/f

36

<
N

N
(0]

n
H

|

o

Number of chord divisions, N
N

—

o
o ! 2 3

Drag parameter,

t
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shapes of optimum delta wings. Thickness condition; nq = 1.7; m/N = 0.20.
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